|  Help  |  About  |  Contact Us

Publication : Prevention of obesity and insulin resistance in mice lacking plasminogen activator inhibitor 1.

First Author  Ma LJ Year  2004
Journal  Diabetes Volume  53
Issue  2 Pages  336-46
PubMed ID  14747283 Mgi Jnum  J:87982
Mgi Id  MGI:3028779 Doi  10.2337/diabetes.53.2.336
Citation  Ma LJ, et al. (2004) Prevention of obesity and insulin resistance in mice lacking plasminogen activator inhibitor 1. Diabetes 53(2):336-46
abstractText  Increased plasminogen activator inhibitor 1 (PAI-1) has been linked to not only thrombosis and fibrosis but also to obesity and insulin resistance. Increased PAI-1 levels have been presumed to be consequent to obesity. We investigated the interrelationships of PAI-1, obesity, and insulin resistance in a high-fat/high-carbohydrate (HF) diet-induced obesity model in wild-type (WT) and PAI-1-deficient mice (PAI-1(-/-)). Obesity and insulin resistance developing in WT mice on an HF diet were completely prevented in mice lacking PAI-1. PAI-1(-/-) mice on an HF diet had increased resting metabolic rates and total energy expenditure compared with WT mice, along with a marked increase in uncoupling protein 3 mRNA expression in skeletal muscle, likely mechanisms contributing to the prevention of obesity. In addition, insulin sensitivity was enhanced significantly in PAI-1(-/-) mice on an HF diet, as shown by euglycemic-hyperinsulinemic clamp studies. Peroxisome proliferator-activated receptor (PPAR)-gamma and adiponectin mRNA, key control molecules in lipid metabolism and insulin sensitivity, were maintained in response to an HF diet in white adipose tissue in PAI-1(-/-) mice, contrasting with downregulation in WT mice. This maintenance of PPAR-gamma and adiponectin may also contribute to the observed maintenance of body weight and insulin sensitivity in PAI-1(-/-) mice. Treatment in WT mice on an HF diet with the angiotensin type 1 receptor antagonist to downregulate PAI-1 indeed inhibited PAI-1 increases and ameliorated diet-induced obesity, hyperglycemia, and hyperinsulinemia. PAI-1 deficiency also enhanced basal and insulin-stimulated glucose uptake in adipose cells in vitro. Our data suggest that PAI-1 may not merely increase in response to obesity and insulin resistance, but may have a direct causal role in obesity and insulin resistance. Inhibition of PAI-1 might provide a novel anti-obesity and anti-insulin resistance treatment.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

Trail: Publication

0 Expression