|  Help  |  About  |  Contact Us

Publication : PAI-1 plays a protective role in CCl4-induced hepatic fibrosis in mice: role of hepatocyte division.

First Author  von Montfort C Year  2010
Journal  Am J Physiol Gastrointest Liver Physiol Volume  298
Issue  5 Pages  G657-66
PubMed ID  20203062 Mgi Jnum  J:159243
Mgi Id  MGI:4442121 Doi  10.1152/ajpgi.00107.2009
Citation  von Montfort C, et al. (2010) PAI-1 plays a protective role in CCl4-induced hepatic fibrosis in mice: role of hepatocyte division. Am J Physiol Gastrointest Liver Physiol 298(5):G657-66
abstractText  Plasminogen activator inhibitor-1 (PAI-1) is an acute phase protein that has been shown to play a role in experimental fibrosis caused by bile duct ligation (BDL) in mice. However, its role in more severe models of hepatic fibrosis (e.g., carbon tetrachloride; CCl(4)) has not been determined and is important for extrapolation to human disease. Wild-type or PAI-1 knockout mice were administered CCl(4) (1 ml/kg body wt ip) 2x/wk for 4 wk. Plasma (e.g., transaminase activity) and histological (e.g., Sirius red staining) indexes of liver damage and fibrosis were evaluated. Proliferation and apoptosis were assessed by PCNA and TdT-mediated dUTP nick-end labeling (TUNEL) staining, respectively, as well as by indexes of cell cycle (e.g., p53, cyclin D1). In contrast to previous studies with BDL, hepatic fibrosis was enhanced in PAI-1(-/-) mice after chronic CCl(4) administration. Indeed, all indexes of liver damage were elevated in PAI-1(-/-) mice compared with wild-type mice. This enhanced liver damage correlated with impaired hepatocyte proliferation. A similar effect on proliferation was observed after one bolus dose of CCl(4), without concomitant increases in liver damage. Under these conditions, a decrease in phospho-p38, coupled with elevated p53 protein, was observed; these results suggest impaired proliferation and a potential G(1)/S cell cycle arrest in PAI-1(-/-) mice. These data suggest that PAI-1 may play multiple roles in chronic liver diseases, both protective and damaging, the latter mediated by its influence on inflammation and fibrosis and the former via helping maintain hepatocyte division after an injury.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression