First Author | Pentland AP | Year | 2004 |
Journal | Cancer Res | Volume | 64 |
Issue | 16 | Pages | 5587-91 |
PubMed ID | 15313895 | Mgi Jnum | J:91955 |
Mgi Id | MGI:3051193 | Doi | 10.1158/0008-5472.CAN-04-1045 |
Citation | Pentland AP, et al. (2004) Cyclooxygenase-1 deletion enhances apoptosis but does not protect against ultraviolet light-induced tumors. Cancer Res 64(16):5587-91 |
abstractText | Inhibition or deletion of cyclooxygenase (COX)-2 has been demonstrated to protect against squamous cell cancer in many studies. Although much effort has focused on COX-2 inhibition, recent work indicates that COX-1 deletion may be nearly as protective. In this study, we used SKH-1 hairless mice in which COX-1 was selectively deleted to examine the role of COX-1 in photocarcinogenesis. After UV exposure, 40-60% less prostaglandin E2 was detected in COX-1-/- animals compared with wild-type (WT) controls. A 4-fold induction of keratinocyte apoptosis was observed in knockouts relative to WT animals, as documented by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling and caspase-3 staining. Proliferation was not significantly different in COX-1+/+, COX-1+/-, and COX-1-/- animals. When susceptibility to UV-induced tumor formation was studied, tumor number, average tumor size, and time of tumor onset in COX-1-/- animals were identical to WT controls. Thus, enhanced apoptosis did not alter UV-induced skin carcinogenesis, suggesting other effects are key to nonsteroidal anti-inflammatory drug chemoprevention. These results contrast sharply with data obtained using the classic 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate cancer model in which a prominent protective effect of COX-1-/- is present. The lack of protection observed here confirms cancer mechanisms are distinct in UV- and tumor promotor-induced cancer models and indicates that chemoprevention strategies must specifically address cancer causes to be effective. |