|  Help  |  About  |  Contact Us

Publication : Endothelial cell activation leads to neutrophil transmigration as supported by the sequential roles of ICAM-2, JAM-A, and PECAM-1.

First Author  Woodfin A Year  2009
Journal  Blood Volume  113
Issue  24 Pages  6246-57
PubMed ID  19211506 Mgi Jnum  J:149379
Mgi Id  MGI:3848390 Doi  10.1182/blood-2008-11-188375
Citation  Woodfin A, et al. (2009) Endothelial cell activation leads to neutrophil transmigration as supported by the sequential roles of ICAM-2, JAM-A, and PECAM-1. Blood 113(24):6246-57
abstractText  Leukocyte transmigration is mediated by endothelial cell (EC) junctional molecules, but the associated mechanisms remain unclear. Here we investigate how intercellular adhesion molecule-2 (ICAM-2), junctional adhesion molecule-A (JAM-A), and platelet endothelial cell adhesion molecule (PECAM-1) mediate neutrophil transmigration in a stimulus-dependent manner (eg, as induced by interleukin-1beta [IL-1beta] but not tumor necrosis factor-alpha [TNF-alpha]), and demonstrate their ability to act in sequence. Using a cell-transfer technique, transmigration responses of wild-type and TNF-alpha p55/p75 receptor-deficient leukocytes (TNFR(-/-)) through mouse cremasteric venules were quantified by fluorescence intravital microscopy. Whereas wild-type leukocytes showed a normal transmigration response to TNF-alpha in ICAM-2(-/-), JAM-A(-/-), and PECAM-1(-/-) recipient mice, TNFR(-/-) leukocytes exhibited a reduced transmigration response. Hence, when the ability of TNF-alpha to directly stimulate neutrophils is blocked, TNF-alpha-induced neutrophil transmigration is rendered dependent on ICAM-2, JAM-A, and PECAM-1, suggesting that the stimulus-dependent role of these molecules is governed by the target cell being activated. Furthermore, analysis of the site of arrest of neutrophils in inflamed tissues from ICAM-2(-/-), JAM-A(-/-), and PECAM-1(-/-) mice demonstrated that these molecules act sequentially to mediate transmigration. Collectively, the findings provide novel insights into the mechanisms of action of key molecules implicated in leukocyte transmigration.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

15 Bio Entities

Trail: Publication

0 Expression