|  Help  |  About  |  Contact Us

Publication : CD1d-dependent NKT cells play a protective role in acute and chronic arthritis models by ameliorating antigen-specific Th1 responses.

First Author  Teige A Year  2010
Journal  J Immunol Volume  185
Issue  1 Pages  345-56
PubMed ID  20525883 Mgi Jnum  J:161617
Mgi Id  MGI:4460042 Doi  10.4049/jimmunol.0901693
Citation  Teige A, et al. (2010) CD1d-dependent NKT cells play a protective role in acute and chronic arthritis models by ameliorating antigen-specific Th1 responses. J Immunol 185(1):345-56
abstractText  A protective and anti-inflammatory role for CD1d-dependent NKT cells (NKTs) has been reported in experimental and human autoimmune diseases. However, their role in arthritis has been unclear, with conflicting reports of CD1d-dependent NKTs acting both as regulatory and disease-promoting cells in arthritis. These differing modes of action might be due to genetic differences of inbred mice and incomplete backcrossing of gene-modified mice. We therefore put special emphasis on controlling the genetic backgrounds of the mice used. Additionally, we used two different murine arthritis models, Ag-induced arthritis (AIA) and collagen-induced arthritis (CIA), to evaluate acute and chronic arthritis in CD1d knockout mice and mice depleted of NK1.1(+) cells. CD1d-deficient mice developed more severe AIA compared with wild-type littermates, with a higher degree of inflammation and proteoglycan depletion. Chronic arthritis in CIA was also worse in the absence of CD1d-dependent NKTs. Elevated levels of Ag-specific IFN-gamma production accompanied these findings rather than changes in IL-17alpha. Depletion of NK1.1(+) cells supported these findings in AIA and CIA. This report provides support for CD1d-dependent NKTs being suppressor cells in acute and chronic arthritis, likely via inhibition of arthritogenic Th1 cells. These results make CD1d-dependent NKTs an attractive target for therapeutic intervention.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

7 Bio Entities

Trail: Publication

0 Expression