|  Help  |  About  |  Contact Us

Publication : Choline supplementation promotes hepatic insulin resistance in phosphatidylethanolamine N-methyltransferase-deficient mice via increased glucagon action.

First Author  Wu G Year  2013
Journal  J Biol Chem Volume  288
Issue  2 Pages  837-47
PubMed ID  23179947 Mgi Jnum  J:193879
Mgi Id  MGI:5469809 Doi  10.1074/jbc.M112.415117
Citation  Wu G, et al. (2013) Choline supplementation promotes hepatic insulin resistance in phosphatidylethanolamine N-methyltransferase-deficient mice via increased glucagon action. J Biol Chem 288(2):837-47
abstractText  Biosynthesis of hepatic choline via phosphatidylethanolamine N-methyltransferase (PEMT) plays an important role in the development of type 2 diabetes and obesity. We investigated the mechanism(s) by which choline modulates insulin sensitivity. PEMT wild-type (Pemt(+/+)) and knock-out (Pemt(-/-)) mice received either a high fat diet (HF; 60% kcal of fat) or a high fat, high choline diet (HFHC; 4 g of choline/kg of HF diet) for 1 week. Hepatic insulin signaling and glucose and lipid homeostasis were investigated. Glucose and insulin intolerance occurred in Pemt(-/-) mice fed the HFHC diet, but not in their Pemt(-/-) littermates fed the HF diet. Plasma glucagon was elevated in Pemt(-/-) mice fed the HFHC diet compared with Pemt(-/-) mice fed the HF diet, concomitant with increased hepatic expression of glucagon receptor, phosphorylated AMP-activated protein kinase (AMPK), and phosphorylated insulin receptor substrate 1 at serine 307 (IRS1-s307). Gluconeogenesis and mitochondrial oxidative stress were markedly enhanced, whereas glucose oxidation and triacylglycerol biosynthesis were diminished in Pemt(-/-) mice fed the HFHC diet. A glucagon receptor antagonist (2-aminobenzimidazole) attenuated choline-induced hyperglycemia and insulin intolerance and blunted up-regulation of phosphorylated AMPK and IRS1-s307. Choline induces glucose and insulin intolerance in Pemt(-/-) mice through modulating plasma glucagon and its action in liver.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression