|  Help  |  About  |  Contact Us

Publication : Lactobacillus casei prevents the development of dextran sulphate sodium-induced colitis in Toll-like receptor 4 mutant mice.

First Author  Chung YW Year  2008
Journal  Clin Exp Immunol Volume  151
Issue  1 Pages  182-9
PubMed ID  18005362 Mgi Jnum  J:130145
Mgi Id  MGI:3771105 Doi  10.1111/j.1365-2249.2007.03549.x
Citation  Chung YW, et al. (2008) Lactobacillus casei prevents the development of dextran sulphate sodium-induced colitis in Toll-like receptor 4 mutant mice. Clin Exp Immunol 151(1):182-9
abstractText  Probiotics, defined as live or attenuated bacteria or bacterial products, confer a significant health benefit to the host. Recently, they have been shown to be useful in the treatment of chronic inflammatory bowel disease and infectious colitis. In this study, we investigated the effect of probiotics on the development of experimental colitis using Toll-like receptor 4 (TLR-4) mutant (lps-/lps-) mice. TLR-4(lps-/lps-) and wild-type (WT) mice were given 2.5% dextran sulphate sodium (DSS) in drinking water to induce colitis with or without Lactobacillus casei pretreatment. Clinical and histological activity of DSS-colitis was attenuated markedly both in TLR-4(lps-/lps-) and WT mice pretreated with L. casei. Interestingly, histological activity was less severe in TLR-4(lps-/lps-) mice than in WT mice. The levels of myeloperoxidase activity and interleukin (IL)-12p40 were attenuated in pretreated TLR-4(lps-/lps-) mice after DSS administration. By contrast, transforming growth factor (TGF)-beta and IL-10 mRNA and protein expressions were increased markedly in pretreated TLR-4(lps-/lps-) mice. The current results suggest that L. casei has a preventive effect in the development of acute DSS-induced colitis and its action depends largely upon TLR-4 status. L. casei modulates the expression of inflammatory cytokines and down-regulates neutrophilic infiltration in the case of incomplete TLR-4 complex signalling.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression