|  Help  |  About  |  Contact Us

Publication : Novel cannabinoid-sensitive receptor mediates inhibition of glutamatergic synaptic transmission in the hippocampus.

First Author  Hájos N Year  2001
Journal  Neuroscience Volume  106
Issue  1 Pages  1-4
PubMed ID  11564411 Mgi Jnum  J:126639
Mgi Id  MGI:3761770 Doi  10.1016/s0306-4522(01)00287-1
Citation  Hajos N, et al. (2001) Novel cannabinoid-sensitive receptor mediates inhibition of glutamatergic synaptic transmission in the hippocampus. Neuroscience 106(1):1-4
abstractText  Psychoactive effects of cannabinoids are thought to be mediated, at least in part, by suppression of both glutamate and GABA release via CB1 cannabinoid receptor. Two types of cannabinoid receptor (CB1 and CB2) have been cloned so far. The CB1 receptors are abundantly expressed in the nervous system, whereas CB2 receptors are limited to lymphoid organs (Matsuda et al., 1990; Munro et al., 1993). Immunocytochemical and electrophysiological studies revealed that in the hippocampus CB1 receptors are expressed on axon terminals of GABAergic inhibitory interneurons (Tsou et al., 1999; Katona et al., 1999) and activation of these receptors decreases GABA release (Hajos et al., 2000). Other physiological studies pointed out the involvement of CB1 receptors in the modulation of hippocampal glutamatergic synaptic transmission and long-term potentiation (Stella et al., 1997; Misner and Sullivan, 1999), but anatomical studies could not confirm the existence of CB1 receptors on glutamatergic terminals. Here we examined cannabinoid actions on both glutamatergic and GABAergic synaptic transmission in the hippocampus of wild type (CB1+/+) and CB1 receptor knockout mice (CB1-/-). The synthetic cannabinoid agonist WIN55,212-2 reduced the amplitudes of excitatory postsynaptic currents in both wild type and CB1-/- mice, while inhibitory postsynaptic currents were decreased only in wild type mice, but not in CB1-/- animals. Our findings are consistent with a CB1 cannabinoid receptor-dependent modulation of GABAergic postsynaptic currents, but a novel cannabinoid-sensitive receptor must be responsible for the inhibition of glutamatergic neurotransmission.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Authors

3 Bio Entities

Trail: Publication

0 Expression