|  Help  |  About  |  Contact Us

Publication : Preparative and biosynthetic insights into pdA2E and isopdA2E, retinal-derived fluorophores of retinal pigment epithelial lipofuscin.

First Author  Zhao J Year  2014
Journal  Invest Ophthalmol Vis Sci Volume  55
Issue  12 Pages  8241-50
PubMed ID  25414195 Mgi Jnum  J:230293
Mgi Id  MGI:5755929 Doi  10.1167/iovs.14-15709
Citation  Zhao J, et al. (2014) Preparative and biosynthetic insights into pdA2E and isopdA2E, retinal-derived fluorophores of retinal pigment epithelial lipofuscin. Invest Ophthalmol Vis Sci 55(12):8241-50
abstractText  PURPOSE: Retinal-derived fluorophores that accumulate as RPE lipofuscin are implicated in pathological mechanisms of AMD. One component of RPE lipofuscin has been characterized as pdA2E, a pyridinium adduct derived from all-trans-retinal and excess ethanolamine. One-step preparation and biosynthetic studies of pdA2E and its novel isomer called isopdA2E are reported. METHODS: Biosynthetic reaction mixtures, RPE/choroids and neural retinas dissected from bovines, eyes harvested from Abca4(-/-)Rdh8(-/-) mice, irradiated samples, and enzyme-treated solutions were analyzed by HPLC, mass spectrometry, nuclear magnetic resonance spectroscopy, fluorescence spectrophotometry, and density functional theory (DFT). RESULTS: Optimization of the in vitro synthesis of pdA2E resulted in a biomimetic preparation of this pigment in a yield of 15%; this protocol also allowed the identification of isopdA2E, a double-bond isomer of pdA2E at the C13C14 position in bovine RPE lipofuscin. Interconversion between these two molecules occurs when either pdA2E or isopdA2E is exposed to light. A phospholipase D-based assay demonstrated the possibility of pdA2-PE being formed in neural retina and served as a precursor of pdA2E in the biosynthetic pathway. DFT calculations revealed that the 492-nm absorbance was assigned to the long arm of pdA2E/isopdA2E and the 340/342-nm absorbance to the short arm. Fluorescence efficiency of pdA2E and isopdA2E is very similar, but is much weaker in comparison with A2E, isoA2E, and iisoA2E. CONCLUSIONS: Our results facilitate the understanding of compositions and biosynthetic pathways of adverse RPE lipofuscin.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression