|  Help  |  About  |  Contact Us

Publication : Autophagy protects the retina from light-induced degeneration.

First Author  Chen Y Year  2013
Journal  J Biol Chem Volume  288
Issue  11 Pages  7506-18
PubMed ID  23341467 Mgi Jnum  J:196891
Mgi Id  MGI:5490168 Doi  10.1074/jbc.M112.439935
Citation  Chen Y, et al. (2013) Autophagy protects the retina from light-induced degeneration. J Biol Chem 288(11):7506-18
abstractText  Autophagy is a conserved feature of lysosome-mediated intracellular degradation. Dysregulated autophagy is implicated as a contributor in neurodegenerative diseases; however, the role of autophagy in retinal degeneration remains largely unknown. Here, we report that the photo-activated visual chromophore, all-trans-retinal, modulated autophagosome formation in ARPE19 retinal cells. Increased formation of autophagosomes in these cells was observed when incubated with 2.5 muM all-trans-retinal, a condition that did not cause cell death after 24 h in culture. However, autophagosome formation was decreased at concentrations, which caused cell death. Increased expression of activating transcription factor 4 (Atf4), which indicates the activation of oxidative stress, was recorded in response to light illumination in retinas of Abca4(-/-)Rdh8(-/-) mice, which showed delayed clearance of all-trans-retinal after light exposure. Expression of autophagosome marker LC3B-II and mitochondria-specific autophagy, mitophagy, regulator Park2, were significantly increased in the retinas of Abca4(-/-)Rdh8(-/-) mice after light exposure, suggesting involvement of autophagy and mitophagy in the pathogenesis of light-induced retinal degeneration. Deletion of essential genes required for autophagy, including Beclin1 systemically or Atg7 in only rod photoreceptors resulted in increased susceptibility to light-induced retinal damage. Increased photoreceptor cell death was observed when retinas lacking the rod photoreceptor-specific Atg7 gene were coincubated with 20 muM all-trans-retinal. Park2(-/-) mice also displayed light-induced retinal degeneration. Ultra-structural analyses showed mitochondrial and endoplasmic reticulum impairment in retinas of these model animals after light exposure. Taken together, these observations provide novel evidence implicating an important role of autophagy and mitophagy in protecting the retina from all-trans-retinal- and light-induced degeneration.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

23 Bio Entities

Trail: Publication

0 Expression