First Author | Khanam A | Year | 2021 |
Journal | Am J Physiol Cell Physiol | Volume | 321 |
Issue | 3 | Pages | C607-C614 |
PubMed ID | 34378992 | Mgi Jnum | J:344798 |
Mgi Id | MGI:6762460 | Doi | 10.1152/ajpcell.00222.2021 |
Citation | Khanam A, et al. (2021) Class A scavenger receptor-1/2 facilitates the uptake of bovine milk exosomes in murine bone marrow-derived macrophages and C57BL/6J mice. Am J Physiol Cell Physiol 321(3):C607-C614 |
abstractText | Bovine milk exosomes (BMEs) are being explored in drug delivery despite their rapid elimination by macrophages. We aimed at identifying the BME transporter in murine bone marrow-derived macrophages (BMDMs). Fluorophore-labeled BMEs were used in transport studies in BMDMs from C57BL/6J and class A scavenger receptor type 1/2 (CASR-1/2) knockout mice and tissue accumulation in macrophage-depleted C57BL/6J mice. Parametric and nonparametric statistics tests for pairwise and multiple comparisons were used. Chemical inhibitors of phagocytosis by cytochalasin D led to a 69 +/- 18% decrease in BME uptake compared with controls (P < 0.05), whereas inhibitors of endocytic pathways other than phagocytosis had a modest effect on uptake (P > 0.05). Inhibitors of class A scavenger receptors (CASRs) including CASR-1/2 caused a 70% decrease in BME uptake (P < 0.05). The uptake of BMEs by BMDMs from CASR-1/2 knockout mice was smaller by 58 +/- 23% compared with wild-type controls (P < 0.05). Macrophage depletion by clodronate caused a more than 44% decrease in BME uptake in the spleen and lungs (P < 0.05), whereas the decrease observed in liver was not statistically significant. In conclusion, CASR-1/2 facilitates the uptake of BMEs in BMDMs and C57BL/6J mice. |