First Author | Friedli M | Year | 2008 |
Journal | Mamm Genome | Volume | 19 |
Issue | 4 | Pages | 272-8 |
PubMed ID | 18392654 | Mgi Jnum | J:133888 |
Mgi Id | MGI:3784618 | Doi | 10.1007/s00335-008-9106-0 |
Citation | Friedli M, et al. (2008) Characterization of mouse Dactylaplasia mutations: a model for human ectrodactyly SHFM3. Mamm Genome 19(4):272-8 |
abstractText | SHFM3 is a limb malformation characterized by the absence of central digits. It has been shown that this condition is associated with tandem duplications of about 500 kb at 10q24. The Dactylaplasia mice display equivalent limb defects and the two corresponding alleles (Dac ( 1j ) and Dac ( 2j )) map in the region syntenic with the duplications in SHFM3. Dac ( 1j ) was shown to be associated with an insertion of an unspecified ETn-like mouse endogenous transposon upstream of the Fbxw4 gene. Dac ( 2j ) was also thought to be an insertion or a small inversion in intron 5 of Fbxw4, but the breakpoints and the exact molecular lesion have not yet been characterized. Here we report precise mapping and characterization of these alleles. We failed to identify any copy number differences within the SHFM3 orthologous genomic locus between Dac mutant and wild-type littermates, showing that the Dactylaplasia alleles are not associated with duplications of the region, in contrast with the described human SHFM3 cases. We further show that both Dac ( 1j ) and Dac ( 2j ) are caused by insertions of MusD retroelements that share 98% sequence identity. The differences between the nature of the human and mouse genomic abnormalities argue against models proposed so far that either envisioned SHFM3 as a local trisomy or Dac as a mutant allele of Fbxw4. Instead, both genetic conditions might lead to complex alterations of gene regulation mechanisms that would impair limb morphogenesis. Interestingly, the Dac ( 2j ) mutation occurs within a highly conserved element that may represent a regulatory sequence for a neighboring gene. |