First Author | Schlegel N | Year | 2008 |
Journal | Am J Physiol Cell Physiol | Volume | 294 |
Issue | 1 | Pages | C178-88 |
PubMed ID | 17989211 | Mgi Jnum | J:130506 |
Mgi Id | MGI:3771785 | Doi | 10.1152/ajpcell.00273.2007 |
Citation | Schlegel N, et al. (2008) The role of VASP in regulation of cAMP- and Rac 1-mediated endothelial barrier stabilization. Am J Physiol Cell Physiol 294(1):C178-88 |
abstractText | Regulation of actin dynamics is critical for endothelial barrier functions. We provide evidence that the actin-binding protein vasodilator-stimulated phosphoprotein (VASP) is required for endothelial barrier maintenance. Baseline permeability was significantly increased in VASP-deficient (VASP(-/-)) microvascular myocardial endothelial cells (MyEnd) in the absence of discernible alterations of immunostaining for adherens and tight junctions. We tested whether VASP is involved in the endothelium-stabilizing effects of cAMP or Rac 1. Forskolin and rolipram (F/R) to increase cAMP and cytotoxic necrotizing factor 1 (CNF-1) to activate Rac 1 were equally efficient to stabilize barrier functions in VASP(-/-) and wild-type (wt) cells. In wt cells, VASP was phosphorylated in response to F/R but did not localize to intercellular junctions. In contrast, CNF-1 and expression of constitutively active Rac 1 induced translocation of VASP to cell borders in wt cells, where it colocalized with active Rac 1. In VASP(-/-) cells, Rac 1 activity was reduced to 0.4 of wt levels in controls and increased approximately 20-fold in response to CNF-1 compared with 7-fold activation in wt cells. Moreover, inactivation of Rac 1 by lethal toxin led to a greater increase of permeability compared with wt cells. All these data suggest that VASP is involved in the regulation of Rac 1 activity. Taking these findings together, our study indicates that VASP at least in part stabilizes endothelial barrier functions by control of Rho-family GTPases. |