First Author | Moreno JL | Year | 2016 |
Journal | Sci Signal | Volume | 9 |
Issue | 410 | Pages | ra5 |
PubMed ID | 26758213 | Mgi Jnum | J:258410 |
Mgi Id | MGI:6141617 | Doi | 10.1126/scisignal.aab0467 |
Citation | Moreno JL, et al. (2016) Allosteric signaling through an mGlu2 and 5-HT2A heteromeric receptor complex and its potential contribution to schizophrenia. Sci Signal 9(410):ra5 |
abstractText | Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) can form multiprotein complexes (heteromers), which can alter the pharmacology and functions of the constituent receptors. Previous findings demonstrated that the Gq/11-coupled serotonin 5-HT2A receptor and the Gi/o-coupled metabotropic glutamate 2 (mGlu2) receptor-GPCRs that are involved in signaling alterations associated with psychosis-assemble into a heteromeric complex in the mammalian brain. In single-cell experiments with various mutant versions of the mGlu2 receptor, we showed that stimulation of cells expressing mGlu2-5-HT2A heteromers with an mGlu2 agonist led to activation of Gq/11 proteins by the 5-HT2A receptors. For this crosstalk to occur, one of the mGlu2 subunits had to couple to Gi/o proteins, and we determined the relative location of the Gi/o-contacting subunit within the mGlu2 homodimer of the heteromeric complex. Additionally, mGlu2-dependent activation of Gq/11, but not Gi/o, was reduced in the frontal cortex of 5-HT2A knockout mice and was reduced in the frontal cortex of postmortem brains from schizophrenic patients. These findings offer structural insights into this important target in molecular psychiatry. |