First Author | Martowicz A | Year | 2019 |
Journal | Arterioscler Thromb Vasc Biol | Volume | 39 |
Issue | 11 | Pages | 2273-2288 |
PubMed ID | 31533473 | Mgi Jnum | J:307306 |
Mgi Id | MGI:6709659 | Doi | 10.1161/ATVBAHA.119.312749 |
Citation | Martowicz A, et al. (2019) Endothelial beta-Catenin Signaling Supports Postnatal Brain and Retinal Angiogenesis by Promoting Sprouting, Tip Cell Formation, and VEGFR (Vascular Endothelial Growth Factor Receptor) 2 Expression. Arterioscler Thromb Vasc Biol 39(11):2273-2288 |
abstractText | OBJECTIVE: Activation of endothelial beta-catenin signaling by neural cell-derived Norrin or Wnt ligands is vital for the vascularization of the retina and brain. Mutations in members of the Norrin/beta-catenin pathway contribute to inherited blinding disorders because of defective vascular development and dysfunctional blood-retina barrier. Despite a vital role for endothelial beta-catenin signaling in central nervous system health and disease, its contribution to central nervous system angiogenesis and its interactions with downstream signaling cascades remains incompletely understood. Approach and Results: Here, using genetically modified mouse models, we show that impaired endothelial beta-catenin signaling caused hypovascularization of the postnatal retina and brain because of deficient endothelial cell proliferation and sprouting. Mosaic genetic analysis demonstrated that endothelial beta-catenin promotes but is not required for tip cell formation. In addition, pharmacological treatment revealed that angiogenesis under conditions of inhibited Notch signaling depends upon endothelial beta-catenin. Importantly, impaired endothelial beta-catenin signaling abrogated the expression of the VEGFR (vascular endothelial growth factor receptor)-2 and VEGFR3 in brain microvessels but not in the lung endothelium. CONCLUSIONS: Our study identifies molecular crosstalk between the Wnt/beta-catenin and the Notch and VEGF-A signaling pathways and strongly suggest that endothelial beta-catenin signaling supports central nervous system angiogenesis by promoting endothelial cell sprouting, tip cell formation, and VEGF-A/VEGFR2 signaling. |