First Author | Liu X | Year | 2020 |
Journal | Cell Host Microbe | Volume | 28 |
Issue | 5 | Pages | 683-698.e6 |
PubMed ID | 32841604 | Mgi Jnum | J:323843 |
Mgi Id | MGI:6877194 | Doi | 10.1016/j.chom.2020.07.019 |
Citation | Liu X, et al. (2020) Legionella-Infected Macrophages Engage the Alveolar Epithelium to Metabolically Reprogram Myeloid Cells and Promote Antibacterial Inflammation. Cell Host Microbe 28(5):683-698.e6 |
abstractText | Alveolar macrophages are among the first immune cells that respond to inhaled pathogens. However, numerous pathogens block macrophage-intrinsic immune responses, making it unclear how robust antimicrobial responses are generated. The intracellular bacterium Legionella pneumophila inhibits host translation, thereby impairing cytokine production by infected macrophages. Nevertheless, Legionella-infected macrophages induce an interleukin-1 (IL-1)-dependent inflammatory cytokine response by recruited monocytes and other cells that controls infection. How IL-1 directs these cells to produce inflammatory cytokines is unknown. Here, we show that collaboration with the alveolar epithelium is critical for controlling infection. IL-1 induces the alveolar epithelium to produce granulocyte-macrophage colony-stimulating factor (GM-CSF). Intriguingly, GM-CSF signaling amplifies inflammatory cytokine production in recruited monocytes by enhancing Toll-like receptor (TLR)-induced glycolysis. Our findings reveal that alveolar macrophages engage alveolar epithelial signals to metabolically reprogram monocytes for antibacterial inflammation. |