|  Help  |  About  |  Contact Us

Publication : Adoptive passive transfer of rabbit beta1-adrenoceptor peptide immune cardiomyopathy into the Rag2-/- mouse: participation of the ER stress.

First Author  Liu J Year  2008
Journal  J Mol Cell Cardiol Volume  44
Issue  2 Pages  304-14
PubMed ID  18155231 Mgi Jnum  J:131906
Mgi Id  MGI:3774804 Doi  10.1016/j.yjmcc.2007.11.007
Citation  Liu J, et al. (2008) Adoptive passive transfer of rabbit beta1-adrenoceptor peptide immune cardiomyopathy into the Rag2-/- mouse: participation of the ER stress. J Mol Cell Cardiol 44(2):304-14
abstractText  Auto-antibodies against the beta(1)-adrenoceptors are present in 30-40% of patients with dilated cardiomyopathy. Recently, a synthetic peptide corresponding to a sequence of the second extracellular loop of the human beta(1)-adrenoceptor (beta(1)-EC(II)) has been shown to produce endoplasmic reticulum (ER) stress, myocyte apoptosis and cardiomyopathy in immunized rabbits. To study the direct cardiac effects of anti-beta(1)-EC(II) antibody in intact animals and if they are mediated via beta(1)-adrenoceptor stimulation, we administered IgG purified from beta(1)-EC(II)-immunized rabbits to recombination activating gene 2 knock-out (Rag2(-/-)) mice every 2 weeks with and without metoprolol treatment. Serial echocardiography and cardiac catheterization showed that beta(1)-EC(II) IgG reduced cardiac systolic function after 3 months. This was associated with increase in heart weight, myocyte apoptosis, activation of caspase-3, -9 and -12, and increased ER stress as evidenced by upregulation of GRP78 and CHOP and cleavage of ATF6. The Rag2(-/-) mice also exhibited increased phosphorylation of CaMKII and p38 MAPK. Metoprolol administration, which attenuated the phosphorylation of CaMKII and p38 MAPK, reduced the ER stress, caspase activation and cell death. Finally, we employed the small-interfering RNA technology to reduce caspase-12 in cultured rat cardiomyocytes. This reduced not only the increase of cleaved caspase-12 but also of the number of myocyte apoptosis produced by beta(1)-EC(II) IgG. Thus, we conclude that ER stress plays an important role in cell death and cardiac dysfunction in beta(1)-EC(II) IgG cardiomyopathy, and the effects of beta(1)-EC(II) IgG are mediated via the beta(1)-adrenergic receptor.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression