|  Help  |  About  |  Contact Us

Publication : Impact of global genome repair versus transcription-coupled repair on ultraviolet carcinogenesis in hairless mice.

First Author  Berg RJ Year  2000
Journal  Cancer Res Volume  60
Issue  11 Pages  2858-63
PubMed ID  10850428 Mgi Jnum  J:62605
Mgi Id  MGI:1859141 Citation  Berg RJ, et al. (2000) Impact of global genome repair versus transcription-coupled repair on ultraviolet carcinogenesis in hairless mice. Cancer Res 60(11):2858-63
abstractText  The nucleotide excision repair (NER) system is comprised of two subpathways, i.e., transcription-coupled repair (TCR) and global genome repair (GGR). To establish the relative importance of TCR and GGR for UV effects on the skin, we have used hairless knockout mouse strain lacking either TCR (CSB -/-) or GGR (XPC -/-). In single exposure experiments, we found that CSB -/- mice have a 7-16 times higher susceptibility to sunburn than XPC -/- mice and than heterozygous (+/-) and wild-type (+/+) controls. Exposure to 80 J/m2 UV radiation (i.e., suberythemogenic in CSB -/-) on 10 consecutive days gives rise to epidermal hyperplasia in CSB -/- and XPC -/-, whereas repair-proficient controls do not show epidermal hyperplasia from these exposures. In addition, CSB -/- mice develop marked parakeratosis, whereas XPC -/- mice and controls do not. Under continued exposure to this daily dose, squamous cell carcinomas appear in CSB -/-, XPC -/-, and in the control groups, whereas only in the CSB -/- animals is a fairly high number of benign papillomas also found. The median latency time of squamous cell carcinomas (diameters > or = 1 mm) is 84 days for the XPC -/- mice, 115 days for the CSB -/- mice, and 234-238 days for the heterozygous and wild-type control groups. These results indicate that GGR is more important than TCR in protection against UV-induced carcinomas of the skin but not against other UV effects such as sunburn, epidermal thickening, scaling of the stratum corneum, and development of papillomas. These results also indicate that GGR capacity may serve as a better predictor for skin cancer susceptibility than sensitivity to sunburn. The relative cancer susceptibilities of GGR- and TCR-deficient skin could well depend on the balance between an increased mutation rate and the presence (in CSB -/-) or lack (in XPC -/-) of a compensatory apoptotic response.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression