|  Help  |  About  |  Contact Us

Publication : Vitamin D receptor (VDR) knockout mice reveal VDR-independent regulation of intestinal calcium absorption and ECaC2 and calbindin D9k mRNA.

First Author  Song Y Year  2003
Journal  J Nutr Volume  133
Issue  2 Pages  374-80
PubMed ID  12566470 Mgi Jnum  J:119318
Mgi Id  MGI:3701750 Doi  10.1093/jn/133.2.374
Citation  Song Y, et al. (2003) Vitamin D receptor (VDR) knockout mice reveal VDR-independent regulation of intestinal calcium absorption and ECaC2 and calbindin D9k mRNA. J Nutr 133(2):374-80
abstractText  To study the role of calbindin D(9k) (CaBP) and epithelial calcium channel ECaC2 in intestinal calcium (Ca) absorption, vitamin D receptor knockout (KO) and wild-type (WT) mice were fed either 0.5% Ca or a 2.0% Ca rescue diet starting at 21 d of age. Ca absorption and parameters involved in this process were measured at 60 or 90 d of age. Compared with WT, KO mice fed the 0.5% Ca diet had higher plasma parathyroid hormone (PTH) and 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], and lower plasma Ca and insulin-like growth factor-I (IGF-I). Duodenal Ca absorption (% Ca absorbed) in KO mice was reduced 71% relative to WT mice and was associated with 55% lower CaBP mRNA, 47% lower CaBP protein and 95% lower ECaC2 mRNA levels. Compared with WT mice, the percentage of Ca absorbed in KO mice fed the 0.5% Ca diet was inappropriately low for the level of duodenal CaBP. The 2% Ca rescue diet normalized plasma Ca, prevented osteomalacia, increased growth and plasma IGF-I levels, but did not normalize plasma PTH or 1,25(OH)(2)D(3) in KO mice. In addition, the relationship between CaBP protein and the percentage of Ca absorbed was normalized, whereas ECaC2 mRNA fell to near zero. Our data demonstrate that higher CaBP levels do not ensure high rates of duodenal Ca absorption and that transcellular Ca absorption can occur even when ECaC2 gene expression is very low. In addition, our data suggest that the 2% Ca diet promotes a vitamin D receptor-independent anabolic effect on bone formation and calcium absorption, leading to improved calcium balance even in the presence of high PTH levels.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Authors

3 Bio Entities

Trail: Publication

0 Expression