|  Help  |  About  |  Contact Us

Publication : Vitamin D Receptor Deletion Changes Bile Acid Composition in Mice Orally Administered Chenodeoxycholic Acid.

First Author  Nishida S Year  2020
Journal  J Nutr Sci Vitaminol (Tokyo) Volume  66
Issue  4 Pages  370-374
PubMed ID  32863311 Mgi Jnum  J:323202
Mgi Id  MGI:6720426 Doi  10.3177/jnsv.66.370
Citation  Nishida S, et al. (2020) Vitamin D Receptor Deletion Changes Bile Acid Composition in Mice Orally Administered Chenodeoxycholic Acid. J Nutr Sci Vitaminol (Tokyo) 66(4):370-374
abstractText  The vitamin D receptor (VDR) is a nuclear receptor for the active form of vitamin D3 and also for the secondary bile acid lithocholic acid (LCA). The in vivo role of VDR in bile acid metabolism remains largely uncharacterized. We previously reported that pharmacological VDR activation enhances urinary bile acid excretion, particularly in mice fed chow supplemented with chenodeoxycholic acid (CDCA), which is metabolized to muricholic acid in mouse liver and is also converted to LCA by intestinal bacteria. In this study, we examined the effect of VDR deletion on bile acid composition utilizing VDR-knockout (VDR-KO) mice. VDR deletion did not change total bile acid levels in liver or feces of mice when fed standard chow supplemented with calcium, needed to prevent hypocalcemia in VDR-KO mice. Total bile acid levels in plasma and urine tended to be higher and lower, respectively, in VDR-KO mice. After feeding CDCA-supplemented chow, VDR-KO mice showed decreased hepatic, fecal and urinary total bile acid and CDCA levels compared to wild-type mice. Plasma total bile acids and LCA were relatively high in these mice. These results indicate that VDR deletion influences CDCA metabolism. VDR may play a role in the excretion of excess bile acids.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression