First Author | Li Y | Year | 2007 |
Journal | Dev Dyn | Volume | 236 |
Issue | 3 | Pages | 746-54 |
PubMed ID | 17260385 | Mgi Jnum | J:118341 |
Mgi Id | MGI:3699454 | Doi | 10.1002/dvdy.21075 |
Citation | Li Y, et al. (2007) Aberrant Bmp signaling and notochord delamination in the pathogenesis of esophageal atresia. Dev Dyn 236(3):746-54 |
abstractText | Human foregut malformation known as esophageal atresia with tracheoesophageal fistula (EA/TEF) occurs in 1 in 4,000 live births with unknown etiology. We found that mice lacking Noggin (Nog(-/-)) displayed Type C EA/TEF, the most common form in humans, and notochordal defects strikingly similar to the adriamycin-induced rat EA/TEF model. In accord with esophageal atresia, Nog(-/-) embryos displayed reduction in the dorsal foregut endoderm, which was associated with reduced adhesion and disrupted basement membrane. However, significant apoptosis in the Nog(-/-) dorsal foregut was not observed. Instead, non-notochordal, likely endodermal, cells were found in Nog(-/-) notochord, suggesting that Noggin function is required in the notochordal plate for its proper delamination from the dorsal foregut. Notably, ablating Bmp7 function in Nog(-/-) embryos rescued EA/TEF and notochord branching defects, establishing a critical role of Noggin-mediated Bmp7 antagonism in EA/TEF pathogenesis. Developmental Dynamics 236:746-754, 2007. (c) 2007 Wiley-Liss, Inc. |