|  Help  |  About  |  Contact Us

Publication : C-C chemokine receptor 5 on pulmonary fibrocytes facilitates migration and promotes metastasis via matrix metalloproteinase 9.

First Author  van Deventer HW Year  2008
Journal  Am J Pathol Volume  173
Issue  1 Pages  253-64
PubMed ID  18535183 Mgi Jnum  J:137381
Mgi Id  MGI:3799411 Doi  10.2353/ajpath.2008.070732
Citation  van Deventer HW, et al. (2008) C-C chemokine receptor 5 on pulmonary fibrocytes facilitates migration and promotes metastasis via matrix metalloproteinase 9. Am J Pathol 173(1):253-64
abstractText  Previously, our group has used a B16-F10 melanoma model to show that C-C chemokine receptor 5 (CCR5) knockout (CCR5(-/-)) mice form fewer pulmonary metastases than wild-type mice. This advantage can be eliminated by injecting CCR5(-/-) mice with wild-type pulmonary mesenchymal cells before tumor injection. In this article, we present the mechanisms underlying this finding. First, we demonstrate that wild-type mesenchymal cells migrate to CCL4 more efficiently in vitro than CCR5(-/-) cells. Wild-type mesenchymal cells were also 3.6 (1.85 to 5.85) times more efficient than CCR5(-/-) cells at migrating into the lung after intravenous injection (P < 0.01). The injection of wild-type but not CCR5(-/-) mesenchymal cells led to a 7.0 +/- 1.6 (P < 0.05)-fold induction of matrix metalloproteinase 9 (MMP9) in the host lung. Neither wild-type nor CCR5(-/-) cells caused significant increases in MMP2, MMP3, or MMP8. Inhibition of the gelatinase activity of MMP9 decreased the number of metastases and restored the advantage that CCR5(-/-) mice have over wild-type mice. Further analysis showed that the CCR5(+) mesenchymal cells expressed CD45(+) and CD13(+) but did not express alpha-smooth muscle actin. This phenotype is characteristic of a subset of mesenchymal cells called fibrocytes. Together, these data suggest a novel role for CCR5 in the migration of pulmonary fibrocytes and the promotion of metastasis.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

7 Bio Entities

Trail: Publication

0 Expression