|  Help  |  About  |  Contact Us

Publication : Regulation of terminal hypertrophic chondrocyte differentiation in <i>Prmt5</i> mutant mice modeling infantile idiopathic scoliosis.

First Author  Liu Z Year  2019
Journal  Dis Model Mech Volume  12
Issue  12 PubMed ID  31848143
Mgi Jnum  J:283043 Mgi Id  MGI:6385611
Doi  10.1242/dmm.041251 Citation  Liu Z, et al. (2019) Regulation of terminal hypertrophic chondrocyte differentiation in Prmt5 mutant mice modeling infantile idiopathic scoliosis. Dis Model Mech 12(12):dmm041251
abstractText  Idiopathic scoliosis (IS) is the most common type of musculoskeletal defect affecting children worldwide, and is classified by age of onset, location and degree of spine curvature. Although rare, IS with onset during infancy is the more severe and rapidly progressive form of the disease, associated with increased mortality due to significant respiratory compromise. The pathophysiology of IS, in particular for infantile IS, remains elusive. Here, we demonstrate the role of PRMT5 in the infantile IS phenotype in mouse. Conditional genetic ablation of PRMT5 in osteochondral progenitors results in impaired terminal hypertrophic chondrocyte differentiation and asymmetric defects of endochondral bone formation in the perinatal spine. Analysis of these several markers of endochondral ossification revealed increased type X collagen (COLX) and Ihh expression, coupled with a dramatic reduction in Mmp13 and RUNX2 expression, in the vertebral growth plate and in regions of the intervertebral disc in the Prmt5 conditional mutant mice. We also demonstrate that PRMT5 has a continuous role in the intervertebral disc and vertebral growth plate in adult mice. Altogether, our results establish PRMT5 as a critical promoter of terminal hypertrophic chondrocyte differentiation and endochondral bone formation during spine development and homeostasis.This article has an associated First Person interview with the first author of the paper.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

14 Bio Entities

Trail: Publication

0 Expression