|  Help  |  About  |  Contact Us

Publication : The FGF-BMP signaling axis regulates outflow tract valve primordium formation by promoting cushion neural crest cell differentiation.

First Author  Zhang J Year  2010
Journal  Circ Res Volume  107
Issue  10 Pages  1209-19
PubMed ID  20847311 Mgi Jnum  J:178188
Mgi Id  MGI:5297658 Doi  10.1161/CIRCRESAHA.110.225318
Citation  Zhang J, et al. (2010) The FGF-BMP signaling axis regulates outflow tract valve primordium formation by promoting cushion neural crest cell differentiation. Circ Res 107(10):1209-19
abstractText  RATIONALE: Heart valves develop from precursor structures called cardiac cushions, an endothelial-lined cardiac jelly that resides in the inner side of the heart tube. The cushions are then invaded by cells from different sources, undergo a series of complicated and poorly understood remodeling processes, and give rise to valves. Disruption of the fibroblast growth factor (FGF) signaling axis impairs morphogenesis of the outflow tract (OFT). Yet, whether FGF signaling regulates OFT valve formation is unknown. OBJECTIVE: To study how OFT valve formation is regulated and how aberrant cell signaling causes valve defects. METHODS AND RESULTS: By using mouse genetic manipulation, cell lineage tracing, ex vivo heart culture, and molecular biology approaches, we demonstrated that FGF signaling in the OFT myocardium upregulated Bmp4 expression, which then enhanced smooth muscle differentiation of neural crest cells (NCCs) in the cushion. FGF signaling also promoted OFT myocardial cell invasion to the cushion. Disrupting FGF signaling interrupted cushion remodeling with reduced NCCs differentiation into smooth muscle and less cardiomyocyte invasion and resulted in malformed OFT valves. CONCLUSIONS: The results demonstrate a novel mechanism by which the FGF-BMP signaling axis regulates formation of OFT valve primordia by controlling smooth muscle differentiation of cushion NCCs.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

30 Bio Entities

Trail: Publication

0 Expression