First Author | Mori J | Year | 2017 |
Journal | Neoplasia | Volume | 19 |
Issue | 3 | Pages | 185-195 |
PubMed ID | 28152424 | Mgi Jnum | J:241381 |
Mgi Id | MGI:5901978 | Doi | 10.1016/j.neo.2016.12.010 |
Citation | Mori J, et al. (2017) EPSIN 3, A Novel p53 Target, Regulates the Apoptotic Pathway and Gastric Carcinogenesis. Neoplasia 19(3):185-195 |
abstractText | BACKGROUND & AIM: p53 activation by cellular stresses induces the transcription of hundreds of its target genes. To elucidate the entire picture of its downstream pathway, we screened a cDNA microarray dataset of adriamycin-treated HCT116 p53-/- or p53+/+ cells and identified EPSIN 3 as a novel p53 target. METHODS: Potential p53 binding sequences in the EPSIN 3 locus were evaluated by reporter and CHIP assays. To investigate the role of EPSIN 3 in the p53 downstream pathway, we assessed DNA damage-induced apoptosis in EPSIN 3-knockdown HCT116 cells or Epsin 3-deficient mice. In addition, we evaluated EPSIN 3 expression levels in various tissues, including gastric adenocarcinoma, human gastric mucosa with or without Helicobacter pylori infection, and mouse acute gastritis tissues induced by indomethacin. RESULTS: In response to DNA damage, p53 induced the expression of EPSIN 3 through the p53 binding elements in the EPSIN 3 promoter and the first intron. Knockdown of EPSIN 3 resulted in resistance to DNA damage-induced apoptosis both in vitro and in vivo. EPSIN 3 expression was down-regulated in gastric cancer tissues compared with normal tissues. In addition, Helicobacter pylori infection and indomethacin-induced acute gastritis repressed EPSIN 3 expression in gastric mucosa. CONCLUSIONS: EPSIN 3 is a novel p53 target and a key mediator of apoptosis. Chronic or acute mucosal inflammation as well as p53 inactivation induced down-regulation of EPSIN 3 and subsequently caused apoptosis resistance, which is a hallmark of cancer cells. |