|  Help  |  About  |  Contact Us

Publication : Attenuation of protein kinase C and cAMP-dependent protein kinase signal transduction in the neurogranin knockout mouse.

First Author  Wu J Year  2002
Journal  J Biol Chem Volume  277
Issue  22 Pages  19498-505
PubMed ID  11912190 Mgi Jnum  J:76761
Mgi Id  MGI:2180249 Doi  10.1074/jbc.M109082200
Citation  Wu J, et al. (2002) Attenuation of protein kinase C and cAMP-dependent protein kinase signal transduction in the neurogranin knockout mouse. J Biol Chem 277(22):19498-505
abstractText  Neurogranin (Ng) is a brain-specific, postsynaptically located protein kinase C (PKC) substrate, highly expressed in the cortex, hippocampus, striatum, and amygdala. This protein is a Ca(2+)-sensitive calmodulin (CaM)-binding protein whose CaM-binding affinity is modulated by phosphorylation and oxidation. To investigate the role of Ng in neural function, a strain of Ng knockout mouse (KO) was generated. Previously we reported (Pak, J. H., Huang, F. L., Li, J., Balschun, D., Reymann, K. G., Chiang, C., Westphal, H., and Huang, K.-P. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 11232-11237) that these KO mice displayed no obvious neuroanatomical abnormality, but exhibited deficits in learning and memory and activation of Ca(2+)/CaM-dependent protein kinase II. In this report, we analyzed several downstream phosphorylation targets in phorbol 12-myristate 13-acetate- and forskolin-treated hippocampal slices from wild type (WT) and KO mice. Phorbol 12-myristate 13-acetate caused phosphorylation of Ng in WT mice and promoted the translocation of PKC from the cytosolic to the particulate fractions of both the WT and KO mice, albeit to a lesser extent in the latter. Phosphorylation of downstream targets, including mitogen-activated protein kinases, 90-kDa ribosomal S6 kinase, and the cAMP response element binding protein (CREB) was significantly attenuated in KO mice. Stimulation of hippocampal slices with forskolin also caused greater stimulation of protein kinase A (PKA) in the WT as compared with those of the KO mice. Again, phosphorylation of the downstream targets of PKA was attenuated in the KO mice. These results suggest that Ng plays a pivotal role in regulating both PKC- and PKA-mediated signaling pathways, and that the deficits in learning and memory of spatial tasks detected in the KO mice may be the result of defects in the signaling pathways leading to the phosphorylation of CREB.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Authors

3 Bio Entities

Trail: Publication

0 Expression