|  Help  |  About  |  Contact Us

Publication : TNF-α-converting enzyme/a disintegrin and metalloprotease-17 mediates mechanotransduction in murine tracheal epithelial cells.

First Author  Shiomi T Year  2011
Journal  Am J Respir Cell Mol Biol Volume  45
Issue  2 Pages  376-85
PubMed ID  21097655 Mgi Jnum  J:186821
Mgi Id  MGI:5433280 Doi  10.1165/rcmb.2010-0234OC
Citation  Shiomi T, et al. (2011) TNF-alpha-converting enzyme/a disintegrin and metalloprotease-17 mediates mechanotransduction in murine tracheal epithelial cells. Am J Respir Cell Mol Biol 45(2):376-85
abstractText  Bronchoconstriction applies compressive stress to airway epithelial cells. We show that the application of compressive stress to cultured murine tracheal epithelial cells elicits the increased phosphorylation of extracellular signal-regulated kinase (ERK) and Akt through an epidermal growth factor receptor (EGFR)-dependent process, consistent with previous observations of the bronchoconstriction-induced activation of EGFR in both human and murine airways. Mechanotransduction requires metalloprotease activity, indicating a pivotal role for proteolytic EGF-family ligand shedding. However, cells derived from mice with targeted deletions of the EGFR ligands Tgfalpha and Hb-egf showed only modest decreases in responses, even when combined with neutralizing antibodies to the EGFR ligands epiregulin and amphiregulin, suggesting redundant or compensatory roles for individual EGF family members in mechanotransduction. In contrast, cells harvested from mice with a conditional deletion of the gene encoding the TNF-alpha-converting enzyme (TACE/ADAM17), a sheddase for multiple EGF-family proligands, displayed a near-complete attenuation of ERK and Akt phosphorylation responses and compressive stress-induced gene regulation. Our data provide strong evidence that TACE plays a critical central role in the transduction of compressive stress.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

10 Bio Entities

Trail: Publication

0 Expression