|  Help  |  About  |  Contact Us

Publication : Robust elimination of genome-damaged cells safeguards against brain somatic aneuploidy following Knl1 deletion.

First Author  Shi L Year  2019
Journal  Nat Commun Volume  10
Issue  1 Pages  2588
PubMed ID  31197172 Mgi Jnum  J:278483
Mgi Id  MGI:6323676 Doi  10.1038/s41467-019-10411-w
Citation  Shi L, et al. (2019) Robust elimination of genome-damaged cells safeguards against brain somatic aneuploidy following Knl1 deletion. Nat Commun 10(1):2588
abstractText  The brain is a genomic mosaic shaped by cellular responses to genome damage. Here, we manipulate somatic genome stability by conditional Knl1 deletion from embryonic mouse brain. KNL1 mutations cause microcephaly and KNL1 mediates the spindle assembly checkpoint, a safeguard against chromosome missegregation and aneuploidy. We find that following Knl1 deletion, segregation errors in mitotic neural progenitor cells give rise to DNA damage on the missegregated chromosomes. This triggers rapid p53 activation and robust apoptotic and microglial phagocytic responses that extensively eliminate cells with somatic genome damage, thus causing microcephaly. By leaving only karyotypically normal progenitors to continue dividing, these mechanisms provide a second safeguard against brain somatic aneuploidy. Without Knl1 or p53-dependent safeguards, genome-damaged cells are not cleared, alleviating microcephaly, but paradoxically leading to total pre-weaning lethality. Thus, mitotic genome damage activates robust responses to eliminate somatic mutant cells, which if left unpurged, can impact brain and organismal fitness.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

36 Bio Entities

Trail: Publication

0 Expression