|  Help  |  About  |  Contact Us

Publication : Surfactant Protein-G in Wildtype and 3xTg-AD Mice: Localization in the Forebrain, Age-Dependent Hippocampal Dot-like Deposits and Brain Content.

First Author  Meinicke A Year  2022
Journal  Biomolecules Volume  12
Issue  1 PubMed ID  35053244
Mgi Jnum  J:324105 Mgi Id  MGI:6860718
Doi  10.3390/biom12010096 Citation  Meinicke A, et al. (2022) Surfactant Protein-G in Wildtype and 3xTg-AD Mice: Localization in the Forebrain, Age-Dependent Hippocampal Dot-like Deposits and Brain Content. Biomolecules 12(1)
abstractText  The classic surfactant proteins (SPs) A, B, C, and D were discovered in the lungs, where they contribute to host defense and regulate the alveolar surface tension during breathing. Their additional importance for brain physiology was discovered decades later. SP-G, a novel amphiphilic SP, was then identified in the lungs and is mostly linked to inflammation. In the brain, it is also present and significantly elevated after hemorrhage in premature infants and in distinct conditions affecting the cerebrospinal fluid circulation of adults. However, current knowledge on SP-G-expression is limited to ependymal cells and some neurons in the subventricular and superficial cortex. Therefore, we primarily focused on the distribution of SP-G-immunoreactivity (ir) and its spatial relationships with components of the neurovascular unit in murine forebrains. Triple fluorescence labeling elucidated SP-G-co-expressing neurons in the habenula, infundibulum, and hypothalamus. Exploring whether SP-G might play a role in Alzheimer's disease (AD), 3xTg-AD mice were investigated and displayed age-dependent hippocampal deposits of beta-amyloid and hyperphosphorylated tau separately from clustered, SP-G-containing dots with additional Reelin-ir-which was used as established marker for disease progression in this specific context. Semi-quantification of those dots, together with immunoassay-based quantification of intra- and extracellular SP-G, revealed a significant elevation in old 3xTg mice when compared to age-matched wildtype animals. This suggests a role of SP-G for the pathophysiology of AD, but a confirmation with human samples is required.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

7 Bio Entities

Trail: Publication

0 Expression