First Author | Kamphuis W | Year | 2016 |
Journal | Biochim Biophys Acta | Volume | 1862 |
Issue | 10 | Pages | 1847-60 |
PubMed ID | 27425031 | Mgi Jnum | J:255474 |
Mgi Id | MGI:6105227 | Doi | 10.1016/j.bbadis.2016.07.007 |
Citation | Kamphuis W, et al. (2016) Transcriptional profiling of CD11c-positive microglia accumulating around amyloid plaques in a mouse model for Alzheimer's disease. Biochim Biophys Acta 1862(10):1847-60 |
abstractText | Amyloid plaques in Alzheimer''s disease (AD) mice are surrounded by activated microglia. The functional role of microglia activation in AD is not well understood; both detrimental and beneficial effects on AD progression have been reported. Here we show that the population of activated microglia in the cortex of the APPswe/PS1dE9 mouse AD model is divided into a CD11c-positive and a CD11c-negative subpopulation. Cd11c transcript levels and number of CD11c-positive microglia increase sharply when plaques start to occur and both parameters continue to rise in parallel with the age-related increasing plaque load. CD11c cells are localized near plaques at all stages of the disease development and constitute 23% of all activated microglia. No differences between these two populations were found in terms of proliferation, immunostaining intensity of Iba1, MHC class II, CD45, or immunoproteasome subunit LMP7/beta5i. Comparison of the transcriptome of isolated CD11c-positive and CD11c-negative microglia from the cortex of aged APPswe/PS1dE9 with WT microglia showed that gene expression changes had a similar general pattern. However, a differential expression was found for genes involved in immune signaling (Il6, S100a8/Mrp8, S100a9/Mrp14, Spp1, Igf1), lysosome activation, and carbohydrate- and cholesterol/lipid-metabolism (Apoe). In addition, the increased expression of Gpnmb/DC-HIL, Tm7sf4/DC-STAMP, and Gp49a/Lilrb4, suggests a suppressive/tolerizing influence of CD11c cells. We show that amyloid plaques in the APP/PS1 model are associated with two distinct populations of activated microglia: CD11c-positive and CD11c-negative cells. Our findings imply that CD11c-positive microglia can potentially counteract amyloid deposition via increased Abeta-uptake and degradation, and by containing the inflammatory response. |