|  Help  |  About  |  Contact Us

Publication : Antitumor NK activation induced by the Toll-like receptor 3-TICAM-1 (TRIF) pathway in myeloid dendritic cells.

First Author  Akazawa T Year  2007
Journal  Proc Natl Acad Sci U S A Volume  104
Issue  1 Pages  252-7
PubMed ID  17190817 Mgi Jnum  J:118750
Mgi Id  MGI:3700327 Doi  10.1073/pnas.0605978104
Citation  Akazawa T, et al. (2007) Antitumor NK activation induced by the Toll-like receptor 3-TICAM-1 (TRIF) pathway in myeloid dendritic cells. Proc Natl Acad Sci U S A 104(1):252-7
abstractText  Myeloid dendritic cells (mDCs) recognize and respond to polyI:C, an analog of dsRNA, by endosomal Toll-like receptor (TLR) 3 and cytoplasmic receptors. Natural killer (NK) cells are activated in vivo by the administration of polyI:C to mice and in vivo are reciprocally activated by mDCs, although the molecular mechanisms are as yet undetermined. Here, we show that the TLR adaptor TICAM-1 (TRIF) participates in mDC-derived antitumor NK activation. In a syngeneic mouse tumor implant model (C57BL/6 vs. B16 melanoma with low H-2 expresser), i.p. administration of polyI:C led to the retardation of tumor growth, an effect relied on by NK activation. This NK-dependent tumor regression did not occur in TICAM-1(-/-) or IFNAR(-/-) mice, whereas a normal NK antitumor response was induced in PKR(-/-), MyD88(-/-), IFN-beta(-/-), and wild-type mice. IFNAR was a prerequisite for the induction of IFN-alpha/beta and TLR3. The lack of TICAM-1 did not affect IFN production but resulted in unresponsiveness to IL-12 production, mDC maturation, and polyI:C-mediated NK-antitumor activity. This NK activation required NK-mDC contact but not IL-12 function in in vivo transwell analysis. Implanted tumor growth in IFNAR(-/-) mice was retarded by adoptively transferring polyI:C-treated TICACM-1-positive mDCs but not TICAM-1(-/-) mDCs. Thus, TICAM-1 in mDCs critically facilitated mDC-NK contact and activation of antitumor NK, resulting in the regression of low MHC-expressing tumors.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

17 Bio Entities

Trail: Publication

0 Expression