First Author | Tang Y | Year | 2018 |
Journal | Mol Med | Volume | 24 |
Issue | 1 | Pages | 66 |
PubMed ID | 30587103 | Mgi Jnum | J:295077 |
Mgi Id | MGI:6459619 | Doi | 10.1186/s10020-018-0065-y |
Citation | Tang Y, et al. (2018) TRIF signaling is required for caspase-11-dependent immune responses and lethality in sepsis. Mol Med 24(1):66 |
abstractText | BACKGROUND: Caspase-11, a cytosolic receptor of bacterial endotoxin (lipopolysaccharide: LPS), mediates immune responses and lethality in endotoxemia and experimental sepsis. However, the upstream pathways that regulate caspase-11 activation in endotoxemia and sepsis are not fully understood. The aim of this study is to test whether TIR-domain-containing adapter-inducing interferon-beta (TRIF) signaling is critical for caspase-11-dependent immune responses and lethality in endotoxemia. METHODS: Mice of indicated genotypes were subjected to endotoxemia or cecum ligation and puncture (CLP) and monitored daily by signs of a moribund state for lethality. Serum interleukin (IL)-1alpha, IL-1beta, IL-6 and tumor necrosis factor (TNF) were measured by ELISA. Data were analyzed by using student's t-test or one-way ANOVA followed by post-hoc Bonferroni test. Survival data were analyzed by using the log-rank test. RESULTS: Blockade of type 1 interferon signaling or genetic deletion of TRIF or guanylate-binding proteins (GBPs) prevented caspase-11-dependent immune responses, organ injury and lethality in endotoxemia and experimental sepsis. In vitro, deletion of GBPs blocked cytosolic LPS-induced caspase-11 activation in mouse macrophages. CONCLUSIONS: These findings demonstrate that TRIF signaling is required for caspase-11-dependent immune responses and lethality in endotoxemia and sepsis, and provide novel mechanistic insights into how LPS induces caspase-11 activation during bacterial infection. |