First Author | Iwama T | Year | 2016 |
Journal | Biochem Biophys Res Commun | Volume | 469 |
Issue | 1 | Pages | 138-143 |
PubMed ID | 26616051 | Mgi Jnum | J:233182 |
Mgi Id | MGI:5780925 | Doi | 10.1016/j.bbrc.2015.11.084 |
Citation | Iwama T, et al. (2016) Vaccination with liposome-coupled glypican-3-derived epitope peptide stimulates cytotoxic T lymphocytes and inhibits GPC3-expressing tumor growth in mice. Biochem Biophys Res Commun 469(1):138-43 |
abstractText | Because therapeutic manipulation of immunity can induce tumor regression, anti-cancer immunotherapy is considered a promising treatment modality. We previously reported that glypican-3 (GPC3), an oncofetal antigen overexpressed in hepatocellular carcinoma (HCC), is a useful target for cytotoxic T lymphocyte (CTL)-mediated cancer immunotherapy, and we have performed clinical trials using the GPC3-derived peptide vaccine. Although vaccine-induced GPC3-peptide-specific CTLs were often tumor reactive in vitro and were correlated with overall survival, no complete response was observed. In the current study, we synthesized liposome-coupled GPC3-derived CTL epitope peptide (pGPC3-lipsome) and investigated its antitumor potential. Vaccination with pGPC3-liposome induced peptide-specific CTLs at a lower dose than conventional vaccine emulsified in incomplete Freund's adjuvant. Coupling of pGPC3 to liposomes was essential for effective priming of GPC3-specific CTLs. In addition, immunization with pGPC3-liposome inhibited GPC3-expressing tumor growth. Thus, vaccination with tumor-associated antigen-derived epitope peptides coupled to the surfaces of liposomes may be a novel therapeutic strategy for cancer. |