|  Help  |  About  |  Contact Us

Publication : Tenascin C and tenascin R similarly prevent the formation of myelin membranes in a RhoA-dependent manner, but antagonistically regulate the expression of myelin basic protein via a separate pathway.

First Author  Czopka T Year  2009
Journal  Glia Volume  57
Issue  16 Pages  1790-801
PubMed ID  19459213 Mgi Jnum  J:156195
Mgi Id  MGI:4419043 Doi  10.1002/glia.20891
Citation  Czopka T, et al. (2009) Tenascin C and tenascin R similarly prevent the formation of myelin membranes in a RhoA-dependent manner, but antagonistically regulate the expression of myelin basic protein via a separate pathway. Glia 57(16):1790-801
abstractText  Membrane formation and the initiation of myelin gene expression are hallmarks of the differentiation of oligodendrocytes from their precursors. Here, we compared the roles of the two related extracellular matrix (ECM) glycoproteins Tenascin C (Tnc) and Tenascin R (Tnr) in oligodendrocyte differentiation. Oligodendrocyte precursors from Tnr-deficient mice exhibited reduced differentiation, as revealed by retarded expression of myelin basic protein (MBP) in culture. This could be rescued with purified Tnr. In contrast, when we cultured oligodendrocytes on a Tnc-containing, astrocyte-derived ECM, they barely expressed MBP. This inhibition could be overcome when we used ECM from astrocytes deficient for Tnc, suggesting that Tnc inhibits differentiation. In contrast to their antagonistic effect on differentiation, both Tnc and Tnr similarly inhibited morphologic maturation. When oligodendrocytes were cultured on the purified glycoproteins, process elaboration and membrane expansion were reduced. Both Tnc and Tnr interfered with the activation of the small GTPase RhoA. Conversely, RhoA and Rac1 activation induced by cytotoxic necrotizing factor 1 (CNF1) increased the formation of myelin membranes, whereas Y27632-mediated inhibition of the Rho-cascade prevented it without, however, affecting the fraction of MBP-expressing cells. Because Tnc and Tnr play antagonistic roles for differentiation and comparably inhibit morphologic maturation, we conclude that independent molecular pathways regulate these processes.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression