First Author | Bhatia D | Year | 2019 |
Journal | JCI Insight | Volume | 4 |
Issue | 23 | PubMed ID | 31639106 |
Mgi Jnum | J:288049 | Mgi Id | MGI:6407520 |
Doi | 10.1172/jci.insight.132826 | Citation | Bhatia D, et al. (2019) Mitophagy-dependent macrophage reprogramming protects against kidney fibrosis. JCI Insight 4(23) |
abstractText | Mitophagy, by maintaining mitochondrial quality control, plays a key role in maintaining kidney function and is impaired in pathologic states. Macrophages are well known for their pathogenic role in kidney fibrosis. Here, we report that PINK1/Parkin-mediated mitophagy in macrophages is compromised in experimental and human kidney fibrosis. We demonstrate downregulation of mitophagy regulators mitofusin-2 (MFN2) and Parkin downstream of PINK1 in kidney fibrosis. Loss of either Pink1 or Prkn promoted renal extracellular matrix accumulation and frequency of profibrotic/M2 macrophages. Pink1-/- or Prkn-/- BM-derived macrophages (BMDMs) showed enhanced expression of rictor. Mitochondria from TGF-beta1-treated Pink1-/- BMDMs exhibited increased superoxide levels, along with reduced respiration and ATP production. In addition, mitophagy in macrophages involves PINK1-mediated phosphorylation of downstream MFN2, MFN2-facilitated recruitment of Parkin to damaged mitochondria, and macrophage-specific deletion of Mfn2 aggravates kidney fibrosis. Moreover, mitophagy regulators were downregulated in human CKD kidney and TGF-beta1-treated human renal macrophages, whereas Mdivi1 treatment suppressed mitophagy mediators and promoted fibrotic response. Taken together, our study is the first to our knowledge to demonstrate that macrophage mitophagy plays a protective role against kidney fibrosis via regulating the PINK1/MFN2/Parkin-mediated pathway. |