|  Help  |  About  |  Contact Us

Publication : Myeloid Cell mPges-1 Deletion Attenuates Mortality Without Affecting Remodeling After Acute Myocardial Infarction in Mice.

First Author  Chen L Year  2019
Journal  J Pharmacol Exp Ther Volume  370
Issue  1 Pages  18-24
PubMed ID  30992314 Mgi Jnum  J:290266
Mgi Id  MGI:6442096 Doi  10.1124/jpet.118.256057
Citation  Chen L, et al. (2019) Myeloid Cell mPges-1 Deletion Attenuates Mortality Without Affecting Remodeling After Acute Myocardial Infarction in Mice. J Pharmacol Exp Ther 370(1):18-24
abstractText  Selective deletion of microsomal prostaglandin E2 synthase-1 (mPges-1) in myeloid cells retards atherogenesis and suppresses the vascular proliferative response to injury, while it does not predispose to thrombogenesis or hypertension. However, studies using bone marrow transplants from irradiated mice suggest that myeloid cell mPGES-1 facilitates cardiac remodeling and prolongs survival after experimental myocardial infarction (MI). Here, we addressed this question using mice lacking mPges-1 in myeloid cells, particularly macrophages [Mac-mPges-1-knockout (KO)], generated by crossing mPges-1 floxed mice with LysMCre mice and subjecting them to coronary artery ligation. Cardiac structure and function were assessed by morphometric analysis, echocardiography, and invasive hemodynamics 3, 7, and 28 days after MI. Despite a similar infarct size, in contrast to the prior report, the post-MI survival rate was markedly improved in the Mac-mPges-1-KO mice compared with wild-type controls. Left ventricular systolic (reflected by ejection fraction, fractional shortness end systolic volume, and +dP/dt) and diastolic function (reflected by end diastolic volume, -dP/dt, and Tau), cardiac hypertrophy (reflected by left ventricular dimensions), and staining for fibrosis did not differ between the groups. In conclusion, we found that Cre-loxP-mediated deletion of mPges-1 in myeloid cells has favorable effects on post-MI survival, with no detectable adverse influence on post-MI remodeling. These results add to evidence that targeting macrophage mPGES-1 may represent a safe and efficacious approach to the treatment and prevention of cardiovascular inflammatory disease.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression