|  Help  |  About  |  Contact Us

Publication : Loss of syndecan-1 induces a pro-inflammatory phenotype in endothelial cells with a dysregulated response to atheroprotective flow.

First Author  Voyvodic PL Year  2014
Journal  J Biol Chem Volume  289
Issue  14 Pages  9547-59
PubMed ID  24554698 Mgi Jnum  J:212433
Mgi Id  MGI:5581390 Doi  10.1074/jbc.M113.541573
Citation  Voyvodic PL, et al. (2014) Loss of syndecan-1 induces a pro-inflammatory phenotype in endothelial cells with a dysregulated response to atheroprotective flow. J Biol Chem 289(14):9547-59
abstractText  Fluid shear stresses are potent regulators of vascular homeostasis and powerful determinants of vascular disease progression. The glycocalyx is a layer of glycoaminoglycans, proteoglycans, and glycoproteins that lines the luminal surface of arteries. The glycocalyx interacts directly with hemodynamic forces from blood flow and, consequently, is a prime candidate for the mechanosensing of fluidic shear stresses. Here, we investigated the role of the glycocalyx component syndecan-1 (sdc-1) in controlling the shear stress-induced signaling and flow-mediated phenotypic modulation in endothelial cells. We found that knock-out of sdc-1 abolished several key early signaling events of endothelial cells in response to shear stress including the phosphorylation of Akt, the formation of a spatial gradient in paxillin phosphorylation, and the activation of RhoA. After exposure to atheroprotective flow, we found that sdc-1 knock-out endothelial cells had a phenotypic shift to an inflammatory/pro-atherosclerotic phenotype in contrast to the atheroprotective phenotype of wild type cells. Consistent with these findings, we found increased leukocyte adhesion to sdc-1 knock-out endothelial cells in vitro that was reduced by re-expression of sdc-1. In vivo, we found increased leukocyte recruitment and vascular permeability/inflammation in sdc-1 knock-out mice. Taken together, our studies support a key role for sdc-1 in endothelial mechanosensing and regulation of endothelial phenotype.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression