First Author | Bissonnette JM | Year | 2008 |
Journal | J Appl Physiol (1985) | Volume | 104 |
Issue | 1 | Pages | 198-204 |
PubMed ID | 18006868 | Mgi Jnum | J:149046 |
Mgi Id | MGI:3847415 | Doi | 10.1152/japplphysiol.00843.2007 |
Citation | Bissonnette JM, et al. (2008) Effect of inspired oxygen on periodic breathing in methy-CpG-binding protein 2 (Mecp2) deficient mice. J Appl Physiol 104(1):198-204 |
abstractText | Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the X-linked gene methyl-CpG-binding protein 2 (Mecp2) that encodes a DNA binding protein involved in gene silencing. Periodic breathing (Cheyne-Stokes respiration) is commonly seen in RTT. Freely moving mice were studied with continuous recording of pleural pressure by telemetry. Episodes of periodic breathing in heterozygous Mecp2 deficient (Mecp2(+/-)) female mice (9.4 +/- 2.2 h(-1)) exceeded those in wild-type (Mecp2(+/+)) animals (2.5 +/- 0.4 h(-1)) (P = 0.010). Exposing Mecp2(+/-) animals to 40% oxygen increased the amount of periodic breathing from 118 +/- 25 s/30 min in air to 242 +/- 57 s/30 min (P = 0.001), and 12% oxygen tended to decrease it (67 +/- 29 s/30 min, P = 0.14). Relative hyperoxia and hypoxia did not affect the incidence of periodic breathing in Mecp2(+/+) animals. The ventilation/apnea ratio (V/A) was less at all levels of oxygen in heterozygous Mecp2(+/-) females compare with wild type (P = 0.003 to P < 0.001), indicating that their loop gain is larger. V/A in Mecp2(+/-) fell from 2.42 +/- 0.18 in normoxia to 1.82 +/- 0.17 in hyperoxia (P = 0.05) indicating an increase in loop gain with increased oxygen. Hyperoxia did not affect V/A in Mecp2(+/+) mice (3.73 +/- 0.28 vs. 3.5 +/- 0.28). These results show that periodic breathing in this mouse model of RTT is not dependent on enhanced peripheral chemoreceptor oxygen sensitivity. Rather, the breathing instability is of central origin. |