| First Author | Kralic JE | Year | 2005 |
| Journal | J Clin Invest | Volume | 115 |
| Issue | 3 | Pages | 774-9 |
| PubMed ID | 15765150 | Mgi Jnum | J:96753 |
| Mgi Id | MGI:3531380 | Doi | 10.1172/JCI23625 |
| Citation | Kralic JE, et al. (2005) Genetic essential tremor in gamma-aminobutyric acidA receptor alpha1 subunit knockout mice. J Clin Invest 115(3):774-9 |
| abstractText | Essential tremor is the most common movement disorder and has an unknown etiology. Here we report that gamma-aminobutyric acidA (GABA(A)) receptor alpha1-/- mice exhibit postural and kinetic tremor and motor incoordination that is characteristic of essential tremor disease. We tested mice with essential-like tremor using current drug therapies that alleviate symptoms in essential tremor patients (primidone, propranolol, and gabapentin) and several candidates hypothesized to reduce tremor, including ethanol; the noncompetitive N-methyl-D-aspartate receptor antagonist MK-801; the adenosine A1 receptor agonist 2-chloro-N6-cyclopentyladenosine (CCPA); the GABA(A) receptor modulators diazepam, allopregnanolone, and Ro15-4513; and the L-type Ca2+ channel antagonist nitrendipine. Primidone, propranolol, and gabapentin reduced the amplitude (power) of the pathologic tremor. Nonsedative doses of ethanol eliminated tremor in mice. Diazepam, allopregnanolone, Ro15-4513, and nitrendipine had no effect or enhanced tremor, whereas MK-801 and CCPA reduced tremor. To understand the etiology of tremor in these mice, we studied the electrophysiological properties of cerebellar Purkinje cells. Cerebellar Purkinje cells in GABA(A) receptor alpha1-/- mice exhibited a profound loss of all responses to synaptic or exogenous GABA, but no differences in abundance, gross morphology, or spontaneous synaptic activity were observed. This genetic animal model elucidates a mechanism of GABAergic dysfunction in the major motor pathway and potential targets for pharmacotherapy of essential tremor. |