|  Help  |  About  |  Contact Us

Publication : Alpha 1-adrenergic receptor responses in alpha 1AB-AR knockout mouse hearts suggest the presence of alpha 1D-AR.

First Author  Turnbull L Year  2003
Journal  Am J Physiol Heart Circ Physiol Volume  284
Issue  4 Pages  H1104-9
PubMed ID  12595294 Mgi Jnum  J:83036
Mgi Id  MGI:2656483 Doi  10.1152/ajpheart.00441.2002
Citation  Turnbull L, et al. (2003) Alpha 1-adrenergic receptor responses in alpha 1AB-AR knockout mouse hearts suggest the presence of alpha 1D-AR. Am J Physiol Heart Circ Physiol 284(4):H1104-9
abstractText  Two functional alpha(1)-adrenergic receptor (AR) subtypes (alpha(1A) and alpha(1B)) have been identified in the mouse heart. However, it is unclear whether the third known subtype, alpha(1D)-AR, is also present. To investigate this, we determined whether there were alpha(1)-AR responses in hearts from a novel mouse model lacking alpha(1A)- and alpha(1B)-ARs (double knockout) (ABKO). In Langendorff-perfused hearts, alpha(1)-ARs were stimulated with phenylephrine. For ABKO hearts, phenylephrine reduced left ventricular pressure and coronary flow (to 87 +/- 2% and 86 +/- 4% of initial, respectively, n = 11, P < 0.01). These effects were blocked by prazosin and 8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]-8-azaspirol[4,5]decane-7,9-dione] dihydrochloride, suggesting that alpha(1D)-AR-mediated responses were present. In contrast, right ventricular trabeculae from ABKO hearts did not respond to phenylephrine, suggesting that in ABKO perfused hearts, the effects of phenylephrine were not mediated by direct actions on cardiomyocytes. A novel finding was that alpha(1)-AR stimulation caused positive inotropy in the wild-type mouse heart, in contrast to negative inotropy observed in mouse cardiac muscle strips. We conclude that mouse hearts lacking alpha(1A)- and alpha(1B)-ARs retain functional alpha(1)-AR responses involving decreases of coronary flow and ventricular pressure that reflect alpha(1D)-AR-mediated vasoconstriction. Furthermore, alpha(1)-AR inotropic responses depend critically on the experimental conditions.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

7 Bio Entities

Trail: Publication

0 Expression