|  Help  |  About  |  Contact Us

Publication : Transcriptional Suppression of CPI-17 Gene Expression in Vascular Smooth Muscle Cells by Tumor Necrosis Factor, Krüppel-Like Factor 4, and Sp1 Is Associated with Lipopolysaccharide-Induced Vascular Hypocontractility, Hypotension, and Mortality.

First Author  Zhao G Year  2019
Journal  Mol Cell Biol Volume  39
Issue  11 PubMed ID  30936247
Mgi Jnum  J:290223 Mgi Id  MGI:6442033
Doi  10.1128/MCB.00070-19 Citation  Zhao G, et al. (2019) Transcriptional Suppression of CPI-17 Gene Expression in Vascular Smooth Muscle Cells by Tumor Necrosis Factor, Kruppel-Like Factor 4, and Sp1 Is Associated with Lipopolysaccharide-Induced Vascular Hypocontractility, Hypotension, and Mortality. Mol Cell Biol 39(11)
abstractText  Vasodilatory shock in sepsis is caused by the failure of the vasculature to respond to vasopressors, which results in hypotension, multiorgan failure, and ultimately patient death. Recently, it was reported that CPI-17, a key player in the regulation of smooth muscle contraction, was downregulated by lipopolysaccharide (LPS) in mesenteric arteries concordant with vascular hypocontractilty. While Sp1 has been shown to activate CPI-17 transcription, it is unknown whether Sp1 is involved in LPS-induced smooth muscle CPI-17 downregulation. Here we report that tumor necrosis factor (TNF) was critical for LPS-induced smooth muscle CPI-17 downregulation. Mechanistically, we identified two GC boxes as a key TNF response element in the CPI-17 promoter and demonstrated that KLF4 was upregulated by TNF, competed with Sp1 for the binding to the GC boxes in the CPI-17 promoter, and repressed CPI-17 transcription through histone deacetylases (HDACs). Moreover, genetic deletion of TNF or pharmacological inhibition of HDACs protected mice from LPS-induced smooth muscle CPI-17 downregulation, vascular hypocontractility, hypotension, and mortality. In summary, these data provide a novel mechanism of the transcriptional control of CPI-17 in vascular smooth muscle cells under inflammatory conditions and suggest a new potential therapeutic strategy for the treatment of vasodilatory shock in sepsis.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression