|  Help  |  About  |  Contact Us

Publication : Prostaglandin E2 inhibits elastogenesis in the ductus arteriosus via EP4 signaling.

First Author  Yokoyama U Year  2014
Journal  Circulation Volume  129
Issue  4 Pages  487-96
PubMed ID  24146253 Mgi Jnum  J:219318
Mgi Id  MGI:5620090 Doi  10.1161/CIRCULATIONAHA.113.004726
Citation  Yokoyama U, et al. (2014) Prostaglandin E2 inhibits elastogenesis in the ductus arteriosus via EP4 signaling. Circulation 129(4):487-96
abstractText  BACKGROUND: Elastic fiber formation begins in mid-gestation and increases dramatically during the last trimester in the great arteries, providing elasticity and thus preventing vascular wall structure collapse. However, the ductus arteriosus (DA), a fetal bypass artery between the aorta and pulmonary artery, exhibits lower levels of elastic fiber formation, which promotes vascular collapse and subsequent closure of the DA after birth. The molecular mechanisms for this inhibited elastogenesis in the DA, which is necessary for the establishment of adult circulation, remain largely unknown. METHODS AND RESULTS: Stimulation of the prostaglandin E(2) (PGE(2)) receptor EP4 significantly inhibited elastogenesis and decreased lysyl oxidase (LOX) protein, which catalyzes elastin cross-links in DA smooth muscle cells (SMCs), but not in aortic SMCs. Aortic SMCs expressed much less EP4 than DASMCs. Adenovirus-mediated overexpression of LOX restored the EP4-mediated inhibition of elastogenesis in DASMCs. In EP4-knockout mice, electron microscopic examination showed that the DA acquired an elastic phenotype that was similar to the neighboring aorta. More importantly, human DA and aorta tissues from 7 patients showed a negative correlation between elastic fiber formation and EP4 expression, as well as between EP4 and LOX expression. The PGE(2)-EP4-c-Src-phospholipase C (PLC)gamma-signaling pathway most likely promoted the lysosomal degradation of LOX. CONCLUSIONS: Our data suggest that PGE(2) signaling inhibits elastogenesis in the DA, but not in the aorta, through degrading LOX protein. Elastogenesis is spatially regulated by PGE(2)-EP4 signaling in the DA.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

Trail: Publication

0 Expression