|  Help  |  About  |  Contact Us

Publication : Estrogen receptor-alpha deficiency promotes increased TNF-alpha secretion and bacterial killing by murine macrophages in response to microbial stimuli in vitro.

First Author  Lambert KC Year  2004
Journal  J Leukoc Biol Volume  75
Issue  6 Pages  1166-72
PubMed ID  15020652 Mgi Jnum  J:90478
Mgi Id  MGI:3043918 Doi  10.1189/jlb.1103589
Citation  Lambert KC, et al. (2004) Estrogen receptor-alpha deficiency promotes increased TNF-alpha secretion and bacterial killing by murine macrophages in response to microbial stimuli in vitro. J Leukoc Biol 75(6):1166-72
abstractText  In this series of studies, we determined the potential role of intracellular estrogen receptors (ER), ERalpha and ERbeta, on macrophage function in response to bacterial stimuli. The sex hormone 17beta-estradiol (E(2)) and ER have been shown to modulate inflammatory responses as well as T helper cell type 1 (TH1)/TH2 responses. The mechanisms E(2) and its receptors use to alter these immune functions remain largely unknown. ERalpha and ERbeta possess complex actions in tissues where they are expressed. We have characterized the receptor repertoire of murine dendritic cells and thioglycollate-elicited peritoneal macrophages (PM). Both cell types express mRNA for ERalpha. Neither cell type expressed detectable amounts of ERbeta mRNA, as determined by reverse transcriptase-polymerase chain reaction using exon-specific primers spanning each of the seven intron/exon junctions. Primary macrophages from ERalpha- and ERbeta-deficient severe combined immunodeficiency mice [ERalpha knockout (KO) and ERssKO, respectively] were used to delineate the effects and potential mechanisms via which steroid receptors modulate macrophage function. ERalpha-deficient PM exposed ex vivo to lipopolysaccharide or Mycobacterium avium exhibited significant increases in tumor necrosis factor alpha (TNF-alpha) secretion as well as reduction in bacterial load when compared with wild-type (WT) PM. In contrast, ERbeta-deficient PM possessed no significant difference in TNF-alpha secretion or in bacterial load when compared with WT littermates. These studies suggest that ERalpha, but not ERbeta, modulates murine PM function.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression