First Author | Sorrentino NC | Year | 2013 |
Journal | EMBO Mol Med | Volume | 5 |
Issue | 5 | Pages | 675-90 |
PubMed ID | 23568409 | Mgi Jnum | J:292616 |
Mgi Id | MGI:6445172 | Doi | 10.1002/emmm.201202083 |
Citation | Sorrentino NC, et al. (2013) A highly secreted sulphamidase engineered to cross the blood-brain barrier corrects brain lesions of mice with mucopolysaccharidoses type IIIA. EMBO Mol Med 5(5):675-90 |
abstractText | Mucopolysaccharidoses type IIIA (MPS-IIIA) is a neurodegenerative lysosomal storage disorder (LSD) caused by inherited defects of the sulphamidase gene. Here, we used a systemic gene transfer approach to demonstrate the therapeutic efficacy of a chimeric sulphamidase, which was engineered by adding the signal peptide (sp) from the highly secreted iduronate-2-sulphatase (IDS) and the blood-brain barrier (BBB)-binding domain (BD) from the Apolipoprotein B (ApoB-BD). A single intravascular administration of AAV2/8 carrying the modified sulphamidase was performed in adult MPS-IIIA mice in order to target the liver and convert it to a factory organ for sustained systemic release of the modified sulphamidase. We showed that while the IDS sp replacement results in increased enzyme secretion, the addition of the ApoB-BD allows efficient BBB transcytosis and restoration of sulphamidase activity in the brain of treated mice. This, in turn, resulted in an overall improvement of brain pathology and recovery of a normal behavioural phenotype. Our results provide a novel feasible strategy to develop minimally invasive therapies for the treatment of brain pathology in MPS-IIIA and other neurodegenerative LSDs. |