|  Help  |  About  |  Contact Us

Publication : Role of caveolar compartmentation in endothelium-derived hyperpolarizing factor-mediated relaxation: Ca2+ signals and gap junction function are regulated by caveolin in endothelial cells.

First Author  Saliez J Year  2008
Journal  Circulation Volume  117
Issue  8 Pages  1065-74
PubMed ID  18268148 Mgi Jnum  J:148452
Mgi Id  MGI:3844805 Doi  10.1161/CIRCULATIONAHA.107.731679
Citation  Saliez J, et al. (2008) Role of caveolar compartmentation in endothelium-derived hyperpolarizing factor-mediated relaxation: Ca2+ signals and gap junction function are regulated by caveolin in endothelial cells. Circulation 117(8):1065-74
abstractText  BACKGROUND: In endothelial cells, caveolin-1, the structural protein of caveolae, acts as a scaffolding protein to cluster lipids and signaling molecules within caveolae and, in some instances, regulates the activity of proteins targeted to caveolae. Specifically, different putative mediators of the endothelium-derived hyperpolarizing factor (EDHF)-mediated relaxation are located in caveolae and/or regulated by the structural protein caveolin-1, such as potassium channels, calcium regulatory proteins, and connexin 43, a molecular component of gap junctions. METHODS AND RESULTS: Comparing relaxation in vessels from caveolin-1 knockout mice and their wild-type littermates, we observed a complete absence of EDHF-mediated vasodilation in isolated mesenteric arteries from caveolin-1 knockout mice. The absence of caveolin-1 is associated with an impairment of calcium homeostasis in endothelial cells, notably, a decreased activity of Ca2+-permeable TRPV4 cation channels that participate in nitric oxide- and EDHF-mediated relaxation. Moreover, morphological characterization of caveolin-1 knockout and wild-type arteries showed fewer gap junctions in vessels from knockout animals associated with a lower expression of connexins 37, 40, and 43 and altered myoendothelial communication. Finally, we showed that TRPV4 channels and connexins colocalize with caveolin-1 in the caveolar compartment of the plasma membrane. CONCLUSIONS: We demonstrated that expression of caveolin-1 is required for EDHF-related relaxation by modulating membrane location and activity of TRPV4 channels and connexins, which are both implicated at different steps in the EDHF-signaling pathway.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression