|  Help  |  About  |  Contact Us

Publication : Thrombospondin-1 promotes liver fibrosis by enhancing TGF-β action in hepatic stellate cells.

First Author  Imamori M Year  2024
Journal  Biochem Biophys Res Commun Volume  693
Pages  149369 PubMed ID  38091840
Mgi Jnum  J:344742 Mgi Id  MGI:7569928
Doi  10.1016/j.bbrc.2023.149369 Citation  Imamori M, et al. (2023) Thrombospondin-1 promotes liver fibrosis by enhancing TGF-beta action in hepatic stellate cells. Biochem Biophys Res Commun 693:149369
abstractText  Insulin resistance in adipose tissue is thought to be a key contributor to the pathogenesis of various metabolic disorders including metabolic dysfunction-associated steatotic liver disease/metabolic dysfunction-associated steatohepatitis (MASLD/MASH), but the mechanism underlying this contribution to MASLD/MASH has remained unknown. We previously showed that dysregulation of the PDK1-FoxO1 signaling axis in adipocytes plays a role in the development of MASLD/MASH by analysis of adipocyte-specific PDK1 knockout (A-PDK1KO) and adipocyte-specific PDK1/FoxO1 double-knockout (A-PDK1/FoxO1DKO) mice. We here focused on the role of the extracellular matrix protein thrombospondin-1 (TSP-1) as a secreted factor whose expression in adipose tissue is increased in A-PDK1KO mice and normalized in A-PDK1/FoxO1DKO mice. Genetic ablation of TSP-1 markedly ameliorated liver fibrosis in A-PDK1KO mice fed a high-fat diet. With regard to the potential mechanism of this effect, TSP-1 augmented the expression of fibrosis-related genes induced by TGF-beta in LX-2 human hepatic stellate cells. We also showed that TSP-1 expression and secretion were negatively regulated by insulin signaling via the PDK1-FoxO1 axis in cultured adipocytes. Our results thus indicate that TSP-1 plays a key role in the pathogenesis of liver fibrosis in MASH. Regulation of TSP-1 expression by PDK1-FoxO1 axis in adipocytes may provide a basis for targeted therapy of hepatic fibrosis in individuals with MASH.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

13 Bio Entities

Trail: Publication

0 Expression