First Author | Naspetti M | Year | 1997 |
Journal | Eur J Immunol | Volume | 27 |
Issue | 6 | Pages | 1392-7 |
PubMed ID | 9209490 | Mgi Jnum | J:40940 |
Mgi Id | MGI:892659 | Doi | 10.1002/eji.1830270615 |
Citation | Naspetti M, et al. (1997) Thymocytes and RelB-dependent medullary epithelial cells provide growth-promoting and organization signals, respectively, to thymic medullary stromal cells. Eur J Immunol 27(6):1392-7 |
abstractText | The thymic medulla is composed of distinct epithelial cell subsets, defined in this report by the reactivity of two novel antibodies, 95 and 29, raised against mouse thymic epithelial cell lines. These antibodies were used to probe the development of medulla in wild-type or mutant thymuses. In CD3 epsilon-deficient mice where thymocyte maturation is arrested at the CD4- CD8- stage, few scattered 95+ and 29+ epithelial cells are found. When few mature thymocytes develop as in CD3- zeta/eta mice, expansion and organization of 95+ but not 29+ cells, becomes detectable. In RelB-deficient mice, T cell maturation proceeds normally but negative selection is inefficient due to the lack of thymic medulla and dendritic cells. Strikingly, 29+ epithelial cells are absent and 95+ medullary epithelial cells are scattered throughout the thymus, intermingling with CDR1+ cortical epithelium. In chimeric mice lacking only dendritic cells, the corticomedullary junction persists and both 95+ and 29+ epithelial cells are localized in the medulla. These results suggest that two types of signals are required for development of thymic medulla. A growth signal depends upon the presence of maturing thymocytes, but organization of the thymic medulla requires the presence of activated 29+ medullary epithelial cells. |