|  Help  |  About  |  Contact Us

Publication : Genetic inactivation of the adenosine A(2A) receptor exacerbates brain damage in mice with experimental autoimmune encephalomyelitis.

First Author  Yao SQ Year  2012
Journal  J Neurochem Volume  123
Issue  1 Pages  100-12
PubMed ID  22639925 Mgi Jnum  J:190427
Mgi Id  MGI:5448818 Doi  10.1111/j.1471-4159.2012.07807.x
Citation  Yao SQ, et al. (2012) Genetic inactivation of the adenosine A(2A) receptor exacerbates brain damage in mice with experimental autoimmune encephalomyelitis. J Neurochem 123(1):100-12
abstractText  Studies with multiple sclerosis patients and animal models of experimental autoimmune encephalomyelitis (EAE) implicate adenosine and adenosine receptors in modulation of neuroinflammation and brain injury. Although the involvement of the A(1) receptor has been recently demonstrated, the role of the adenosine A(2A) receptor (A(2A)R) in development of EAE pathology is largely unknown. Using mice with genetic inactivation of the A(2A) receptor, we provide direct evidence that loss of the A(2A)R exacerbates EAE pathology in mice. Compared with wild-type mice, A(2A)R knockout mice injected with myelin oligodendroglia glycoprotein peptide had a higher incidence of EAE and exhibited higher neurological deficit scores and greater decrease in body weight. A(2A)R knockout mice displayed increased inflammatory cell infiltration and enhanced microglial cell activation in cortex, brainstem, and spinal cord. In addition, demyelination and axonal damage in brainstem were exacerbated, levels of Th1 cytokines increased, and Th2 cytokines decreased. Collectively, these findings suggest that extracellular adenosine acting at A(2A)Rs triggers an important neuroprotective mechanism. Thus, the A(2A) receptor is a potential target for therapeutic approaches to multiple sclerosis.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression