|  Help  |  About  |  Contact Us

Publication : Brain metabolic and functional alterations in a liver-specific PTEN knockout mouse model.

First Author  Patil I Year  2018
Journal  PLoS One Volume  13
Issue  9 Pages  e0204043
PubMed ID  30235271 Mgi Jnum  J:265861
Mgi Id  MGI:6202294 Doi  10.1371/journal.pone.0204043
Citation  Patil I, et al. (2018) Brain metabolic and functional alterations in a liver-specific PTEN knockout mouse model. PLoS One 13(9):e0204043
abstractText  Insulin resistance-as observed in aging, diabetes, obesity, and other pathophysiological situations, affects brain function, for insulin signaling is responsible for neuronal glucose transport and control of energy homeostasis and is involved in the regulation of neuronal growth and synaptic plasticity. This study investigates brain metabolism and function in a liver-specific Phosphatase and Tensin Homologue (Pten) knockout mouse model (Liver-PtenKO), a negative regulator of insulin signaling. The Liver-PtenKO mouse model showed an increased flux of glucose into the liver-thus resulting in an overall hypoglycemic and hypoinsulinemic state-and significantly lower hepatic production of the ketone body beta-hydroxybutyrate (as compared with age-matched control mice). The Liver-PtenKO mice exhibited increased brain glucose uptake, improved rate of glycolysis and flux of metabolites in the TCA cycle, and improved synaptic plasticity in the hippocampus. Brain slices from both control- and Liver-PtenKO mice responded to the addition of insulin (in terms of pAKT/AKT levels), thereby neglecting an insulin resistance scenario. This study underscores the significance of insulin signaling in brain bioenergetics and function and helps recognize deficits in diseases associated with insulin resistance.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression