|  Help  |  About  |  Contact Us

Publication : Cell type-specific abundance of 4EBP1 primes prostate cancer sensitivity or resistance to PI3K pathway inhibitors.

First Author  Hsieh AC Year  2015
Journal  Sci Signal Volume  8
Issue  403 Pages  ra116
PubMed ID  26577921 Mgi Jnum  J:301636
Mgi Id  MGI:6506872 Doi  10.1126/scisignal.aad5111
Citation  Hsieh AC, et al. (2015) Cell type-specific abundance of 4EBP1 primes prostate cancer sensitivity or resistance to PI3K pathway inhibitors. Sci Signal 8(403):ra116
abstractText  Pharmacological inhibitors against the PI3K-AKT-mTOR (phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin) pathway, a frequently deregulated signaling pathway in cancer, are clinically promising, but the development of drug resistance is a major limitation. We found that 4EBP1, the central inhibitor of cap-dependent translation, was a critical regulator of both prostate cancer initiation and maintenance downstream of mTOR signaling in a genetic mouse model. 4EBP1 abundance was distinctly different between the epithelial cell types of the normal prostate. Of tumor-prone prostate epithelial cell types, luminal epithelial cells exhibited the highest transcript and protein abundance of 4EBP1 and the lowest protein synthesis rates, which mediated resistance to both pharmacologic and genetic inhibition of the PI3K-AKT-mTOR signaling pathway. Decreasing total 4EBP1 abundance reversed resistance in drug-insensitive cells. Increased 4EBP1 abundance was a common feature in prostate cancer patients who had been treated with the PI3K pathway inhibitor BKM120; thus, 4EBP1 may be associated with drug resistance in human tumors. Our findings reveal a molecular program controlling cell type-specific 4EBP1 abundance coupled to the regulation of global protein synthesis rates that renders each epithelial cell type of the prostate uniquely sensitive or resistant to inhibitors of the PI3K-AKT-mTOR signaling pathway.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

9 Bio Entities

Trail: Publication

0 Expression